

SIMTICS Radiography Module Outlines

List of Modules

Section 1: Theory modules: text, video, anatomy, quiz - no simulation	3
Radiographic Imaging	3
Radiographic Analog Processing	5
Computer Science, the Digital Image, and Computed Radiography	6
Computed Tomography and Magnetic Resonance Imaging	8
Mammography, Bone Densitometry and Quality Control	9
Radiographic Image Analysis	10
Fluoroscopy and Interventional Radiography	12
Digital Radiography and Fluoroscopy, Image Viewing and PACS, and Quality Control	13
Section 2: Positioning modules contain simulations	15
Basic Radiographic Techniques	15
Radiography of the Chest, Bony Thorax, and Soft Tissues of the Neck	17
Radiography of the Upper Extremity and Shoulder Girdle	18
Radiography of the Lower Extremity and Hip	20
Radiography of the Abdomen and Pelvis	21
Radiography of the Skull, Cranial and Facial Bones, and Paranasal Sinuses	22
Radiography of the Spinal Column	23
Radiography of the Upper and Lower Gastrointestinal Systems and the Biliary Tract	24
Radiography of the Central Nervous System, Circulatory System, and Arthrography	26
Radiography of the Urinary and Reproductive Systems	28
Non-Routine Projections for Chest, Neck, Upper Extremities & Shoulder Girdle	29
Pharmacology and Drug Administration	30
Additional "Clinical" Modules for Academic Institutions	34

Section 1: Theory modules: text, video, anatomy, quiz - no simulation

Radiographic Imaging

Description

This theory module (no simulation) teaches the key concepts that underpin radiographic imaging such as scatter radiation, exposure, and field size, and the tools and techniques available to create high-quality X-ray images.

Learning objectives

- Understand the production and control of scatter radiation and its effect on image contrast
- Describe the construction and performance characteristics of grids and apply this knowledge to the correct clinical situation
- Understand and discuss the relationship of factors that may influence x-ray quantity and quality
- Understand the purpose and construction, and explain the use, of the three types of technique charts
- Apply knowledge of the three major interrelated categories of radiographic quality
- Discuss the tools and techniques available to create high-quality images
- Identify and discuss the three categories of radiographic artifacts and explain their causes.

Content Detail

Introduction

Step 1 - Beam-restricting devices

Step 1.1 - Scatter radiation

Step 1.1.1 - Kilovoltage (kV)

Step 1.1.2 - Field size

Step 1.1.3 - Patient thickness

Step 1.2 - Control of scatter

Step 1.2.1 - Effect of scatter on image contrast

Step 1.2.2 - Beam restrictors

Step 2 - Radiographic grids

Step 2.1 - Grids

Step 2.1.1 - Grid ratio

Step 2.1.2 - Grid frequency

Step 2.1.3 - Grid strip

Step 2.2 - Grid performance

Step 2.2.1 - Contrast improvement factor (k)

Step 2.2.2 - Bucky factor (B)

Step 2.3 - Grid types

Step 2.4 - Grid problems

Step 2.4.1 - Off-center grid (lateral decentering)

Step 2.4.2 - Off-level grid

Step 2.4.3 - Off-focus grid

Step 2.4.4 - Upside-down grid

Step 2.5 - Grid selection

Step 2.5.1 - Patient dose

Step 2.6 - Air-gap technique

Step 3 - Radiographic exposure

Step 3.1 - Kilovoltage (kV)

Step 3.2 - Milliampere (mA)

Step 3.3 - Exposure time

Step 3.4 - Distance

Step 3.5 - Imaging system characteristics

Step 3.5.1 - Focal-spot size

Step 3.5.2 - Filtration

Step 3.5.3 - High-voltage generation

Step 4 - Image quality

Step 4.1 - Definitions

Step 4.1.1 - Radiographic quality

Step 4.1.2 - Resolution

Step 4.1.3 - Noise

Step 4.1.4 - Speed

Step 4.2 - Film factors

Step 4.2.1 - Characteristic curve

Step 4.2.2 - Optical density (OD)

Step 4.2.3 - Film processing

Step 4.3 - Geometric factors

Step 4.3.1 - Magnification

Step 4.3.2 - Distortion

Step 4.3.3 - Focal spot blur

Step 4.3.4 - Heel effect

Step 4.4 - Subject factors

Step 4.4.1 - Subject contrast

Step 4.4.2 - Motion blur

Step 4.5 - Tools for improving radiographic quality

Step 4.5.1 - Patient position

Step 4.5.2 - Image receptors

Step 4.5.3 - Selection of technique factors

Step 5 - Radiographic technique

Step 5.1 - Patient factors

Step 5.1.1 - Thickness

Step 5.1.2 - Composition

Step 5.1.3 - Pathology

Step 5.2 - Image quality factors

Step 5.2.1 - Optical density (OD)

Step 5.2.2 - Contrast

Step 5.2.3 - Detail

Step 5.2.4 - Distortion

Step 5.3 - Exposure technique factors

Step 5.4 - Automatic exposure control (phototimer)

Radiographic Analog Processing

Description

This theory module (no simulation) provides a thorough introduction to radiographic film and film processing, handling and storage. It also covers special imaging methods such as tomography and magnification radiography.

Learning objectives

- · Discuss the construction of radiographic film
- List and define the characteristics of x-ray film
- Understand and describe the chemical components/interaction and process required to convert a latent image to a ready-to-read radiograph
- Explain the systems of the automatic processor
- Describe the component layers, properties, and care of a radiographic intensifying screen
- Describe image noise and image blur
- Explain the Patient's Bill of Rights, HIPAA Privacy Rule, and Patient Safety Act

Content Details

Introduction

```
Step 1 - Radiographic film
```

Step 1.1 - Remnant radiation

Step 1.2 - Film construction

Step 1.2.1 - Base

Step 1.2.2 - Emulsion

Step 1.2.3 - Silver halide crystals

Step 1.3 - Latent image formation

Step 1.3.1 - Photon interaction with silver halide (Gurney-Mott theory)

Step 1.3.2 - Latent image

Step 1.4 - Types of film

Step 1.4.1 - Screen-film

Step 1.4.2 - Direct exposure film (non-screen film; special application film)

Step 1.4.3 - Mammography film

Step 1.4.4 - Laser film

Step 1.4.5 - Specialty film

Step 2 - Intensifying screens

Step 2.1 - Cassette

Step 2.2 - Screen construction

Step 2.3 - Luminescence

Step 2.4 - Screen characteristics

Step 2.4.1 - Screen speed

Step 2.4.2 - Image noise

Step 2.4.3 - Spatial resolution

Step 2.5 - Screen-film combinations

Step 2.6 - Screen care

Step 3 - Processing the latent image

Step 3.1 - Chemical processes

Step 3.2 - Silver (Ag+) recovery

Step 4 - Processing

Step 4.1 - Automatic processing

Step 4.1.1 - Transport system

Step 4.1.2 - Temperature control system

Step 4.1.3 - Circulation system

Step 4.1.4 - Replenishment system

Step 4.1.5 - Dryer system

Step 4.2 - Alternative processing methods

Step 4.2.1 - Rapid processing

Step 4.2.2 - Extended processing

Step 4.2.3 - Daylight processing

Step 4.2.4 - Dry processing

Step 5 - Handling and storage of film

Step 5.1 - Heat and humidity

Step 5.2 - Light

Step 5.3 - Radiation

Step 5.4 - Shelf life

Step 5.5 - Safelights

Step 6 - Health and safety

Step 6.1 - Glutaraldehyde exposure

Step 6.2 - Multiple chemical sensitivity

Step 6.3 - Safety regulations

Step 6.4 - Material Safety Data Sheets (MSDS)

Step 6.5 - Safety resources

Step 7 - Special imaging methods

Step 7.1 - Tomography

Step 7.2 - Magnification radiography

Computer Science, the Digital Image, and Computed Radiography

Description

This theory module (no simulation) provides an introduction to computer science, the technology used in radiographic imaging, and the difference between digital imaging and computed radiography. It also covers the elements of the digital image and how these affect image quality.

Learning objectives

- Review history and development of the computer.
- Define terminology associated with digital imaging systems.
- Describe the various types of digital receptors.

- Discuss the fundamentals of digital radiography, distinguishing between cassette-based systems and cassette-less systems.
- Describe the advantages and disadvantages of digital imaging versus cassette-based imaging.
- Discuss spatial resolution, contrast resolution, and noise related to digital imaging.
- Describe the features of a contrast-detail curve, and interpret a modulation transfer function curve.
- Discuss how post-processing allows the visualization of a wide dynamic range.
- Explain the relevant features of a storage phosphor imaging plate and operating characteristics of a computed radiography reader.
- Describe how digital imaging can be used to help reduce patient radiation dose.
- Describe HIPAA concerns with electronic information.
- Explain the Patient's Bill of Rights, Patient Privacy Rule (HIPAA) and Patient Safety

Content Detail

Introduction

Step 1 - Background to the computer

Step 1.1 - Computer types

Step 1.1.1 - Server

Step 1.1.2 - Operator console

Step 1.1.3 - Workstation

Step 1.2 - Computer systems

Step 1.2.1 - Hardware

Step 1.3 - Software

Step 1.4 - Networking systems

Step 1.5 - Computer security

Step 2 - Digital imaging compared with film-screen imaging

Step 2.1 - Equipment

Step 2.2 - Image acquisition

Step 2.3 - Image processing

Step 2.4 - Clinical application

Step 2.5 - Patient radiation dose

Step 3 - Elements of the digital image and image quality

Step 3.1 - Spatial resolution

Step 3.1.1 - Field-of-view

Step 3.1.2 - Matrix size

Step 3.1.3 - Pixel size

Step 3.1.4 - Bit-depth

Step 3.1.5 - Spatial frequency

Step 3.2 - Contrast resolution

Step 3.2.1 - Linear response

Step 3.2.2 - Exposure latitude

Step 3.2.3 - Detective quantum efficiency

Step 3.2.4 - Signal-to-noise ratio

Step 3.2.5 - Contrast-detail curve

Step 3.3 - Post-processing

Step 3.3.1 - Windowing

Step 3.3.2 - Edge enhancement

Step 3.3.3 - Annotation

Step 3.4 - Grids

Step 3.5 - Image artifacts

Step 3.6 - Collimation

Step 4 - Computed radiography

Step 4.1 - Equipment

Step 4.1.1 - X-Ray imaging system

Step 4.1.2 - Cassette

Step 4.1.3 - Image plate

Step 4.1.4 - Computed radiography reader

Step 4.2 - Image acquisition

Step 4.3 - Image processing

Step 4.3.1 - Cassette insertion

Step 4.3.2 - Laser scanner

Step 4.3.3 - Image process

Step 4.3.4 - Image display

Step 4.3.5 - Image plate erasure

Step 4.3.6 - Cassette ejection

Step 4.4 - Patient radiation dose

Computed Tomography and Magnetic Resonance Imaging

Description

This introductory module (no simulation) covers the basic principles of CT, spiral CT and MRI scanning, the differences between them, and advantages of each.

Learning objectives

- Explain the purpose, principles, and application of computed tomography (CT)
- Discuss the concepts of transverse tomography, translation, and reconstruction of images
- Discuss the design features that make spiral computed tomography possible
- Explain the spiral imaging principles of interpolation, pitch, index, and section sensitivity
- Identify the appearance of contrast media on a CT image
- Identify basic cross-sectional anatomy of the head, thorax, and abdomen on diagrams, magnetic resonance imaging (MRI), and CT images
- Explain the purpose, principles, and application of MRI
- Identify the appearance of T1 and T2 MRI images

Content Details

Introduction

Step 1 - Computed tomography

Step 1.1 - Principles of operation

Step 1.2 - Generations of CT scanners

Step 1.3 - System components

Step 1.4 - Image characteristics and reconstruction

Step 1.5 - Image quality

Step 1.6 - CT cross-section anatomy

Step 2 - Spiral computed tomography

Step 2.1 - Imaging principles

Step 2.2 - System design

Step 2.3 - Imaging techniques

Step 2.4 - Advantages and disadvantages of mulitslice spiral CT

Step 3 - Magnetic resonance imaging

Step 3.1 - Principles

Step 3.2 - Equipment

Step 3.3 - Application and safety

Step 3.4 - Technique

Step 3.5 - Application

Step 3.6 - Comparison of CT and MR images

Mammography, Bone Densitometry and Quality Control

Description

This overview module (no simulation) discusses mammography and bone densitometry.

Learning objectives

- Discuss the differences between soft tissue radiography and conventional radiography
- Identify the recommended intervals for self-examination and x-ray examination of the breast
- Describe the unique features of the mammographic imaging system
- Describe the image receptors used and spatial resolution obtained in mammography
- Explain the differences between diagnostic and screening mammography
- Describe the unique features of a bone density system
- Differentiate between quality improvement/management, quality assurance, and quality control
- List the benefits of a quality management program, to the patient and to the department
- List elements of a quality management program and discuss how each is related to the quality management program
- Discuss the proper test equipment/procedures for evaluating the operation of the x-ray generator
- Evaluate the performance of the x-ray generator

Content Details

Introduction

Step 1 - Mammography

Step 1.1 - Soft-tissue radiography

Step 1.2 - Basis for mammography

Step 1.3 - Mammographic imaging system

Step 1.4 - Film-screen mammography

Step 1.5 - Computed radiography mammography

Step 1.6 - Digital mammography

Step 1.7 - Stereotactic breast biopsy

Step 2 - Mammography quality control

Step 2.1 - Roles of the mammography quality control team

Step 2.2 - Quality control program

Step 2.2.1 - Daily quality control (QC) tasks for a film-screen unit

Step 2.2.2 - Weekly QC tasks for a film-screen unit

Step 2.2.3 - Monthly tasks for a film-screen unit

Step 2.2.4 - Quarterly tasks for a film-screen unit

Step 2.2.5 - Semiannual tasks for a film-screen unit

Step 2.2.6 - Quality control (QC) tasks for a digital mammography unit

Step 2.2.7 - Routine QC tests for a computed radiography (CR) mammography system

Step 3 - Bone densitometry

Step 3.1 - Introduction

Step 3.2 - Dual-energy x-ray absorptiometry (DXA or DEXA)

Step 4 - Quality control

Step 4.1 - Quality assurance

Step 4.2 - Quality control

Step 4.3 - Radiographic quality control

Step 4.4 - Fluoroscopic quality control

Step 4.5 - Tomographic quality control

Step 4.6 - Processor quality control

Step 5 - Image artifacts

Step 5.1 - Exposure factors

Step 5.2 - Processor artifacts

Step 5.3 - Handling and storage artifacts

Radiographic Image Analysis

Description

This information-rich module explains radiographic image analysis, including how to manage the factors that affect image quality. (No simulation)

Learning objectives

- Describe the role of the radiologic technologist in image analysis.
- Describe an effective image analysis method.
- Identify the steps in the decision-making process used in image analysis.
- Discuss the impact of patient preparation on the resulting radiographic image.
- Explain the importance of proper patient positioning and how it contributes to an acceptable radiograph.
- Discuss the elements of a radiographic image.
- Correlate the criteria for producing a diagnostic-quality radiograph to the elements of a radiographic image.

- Apply the process for evaluating images for adequate density/brightness, contrast, recorded detail/spatial resolution, and acceptable limits of distortion.
- Explain how the radiologic technologist determines that an adequate level of penetration has been applied to produce the desired level of contrast.
- Analyze images to determine the appropriate use of beam restriction.
- Identify the radiographic appearance of common equipment malfunctions that affect image quality and take corrective action.
- Differentiate between technical factor problems, procedural factor problems, and equipment malfunctions.
- Critique images for appropriate technical and procedural factors, and recommend corrective actions, if necessary.
- Explain the Patient's Bill of Rights, Patient Privacy Rule (HIPAA), and Patient Safety Act.

Content Detail

Introduction

Step 1 - Chest, ribs, and abdomen

Step 1.1 - Chest - Adult

Step 1.2 - Lower ribs

Step 1.3 - Abdomen

Step 2 - Upper extremity and shoulder

Step 2.1 - Finger

Step 2.2 - Thumb

Step 2.3 - Hand

Step 2.4 - Wrist

Step 2.5 - Forearm

Step 2.6 - Elbow

Step 2.7 - Humerus

Step 2.8 - Shoulder

Step 3 - Lower extremity and pelvis

Step 3.1 - Foot

Step 3.2 - Ankle

Step 3.3 - Lower leg - tibia and fibula

Step 3.4 - Knee

Step 3.5 - Femur

Step 3.6 - Hip

Step 3.7 – Pelvis

Step 4 - Spinal column

Step 4.1 - Cervical spine

Step 4.2 - Thoracic spine

Step 4.3 - Lumbar spine

Step 5 - Cranium, facial bones, paranasal sinuses, and gastrointestinal system

Step 5.1 - Cranium (skull)

Step 5.2 - Facial bones

Step 5.3 - Paranasal sinuses

Step 5.4 - Gastrointestinal system

Fluoroscopy and Interventional Radiography

Description

This theory module (no simulation) provides an overview of fluoroscopy, which allows real-time viewing of moving internal structures and fluids in the human body, and interventional radiology, a rapidly growing area of medicine that uses image-guided procedures to diagnose and treat patients using the least invasive techniques

Learning objectives

- Describe the measures used to provide radiation protection for patients and personnel during interventional radiology
- Discuss the advantages that nonionic (water-soluble) contrast media offer over ionic contrast media
- Explain image-intensified fluoroscopy
- Discuss gain and conversion factors as related to image intensification
- Discuss fluoroscopic image formation in terms of image size and brightness
- Indicate the purpose, construction, and application of video camera tubes, TV monitors, and video recorders
- Identify fluoroscopic recording equipment
- Discuss the purpose of and procedure for radiographic magnification
- Discuss electronic imaging equipment used in radiography and fluoroscopy
- Discuss flat panel detectors used in digital electronic x-ray equipment

Content Details

Introduction

Step 1 - Fluoroscopy

Step 1.1 - Radiation protection

Step 1.1.1 - Personal protection

Step 1.1.2 - Patient protection

Step 1.2 - Special demands

Step 1.3 - Fluoroscopic technique

Step 1.4 - Image intensification

Step 1.5 - Fluoroscopic image monitoring

Step 2 - Interventional radiology

Step 2.1 - Basic principles

Step 2.2 - Interventional radiology suite

Digital Radiography and Fluoroscopy, Image Viewing and PACS, and Quality Control

Description

This theory module (no simulation) provides an introduction to digital image acquisition, display and storage.

Learning objectives

- Describe the capture, coupling, and collection stages of each type of digital radiographic imaging system.
- Discuss the use of silicon, selenium, cesium iodide, and gadolinium oxysulphide in digital radiography.
- Describe the parts of a digital fluoroscopy system and explain their functions.
- Outline the procedures for temporal subtraction and energy subtraction.
- Describe the effect of conditions such as luminance and ambient lighting on viewing digital images.
- Compare the advantages and disadvantages of hard and soft copy images.
- Describe the Picture Archival and Communication System (PACS) and its function, including differences between the Hospital Information System (HIS), Radiology Information System (RIS), and Digital Imaging and Communications (DICOM).
- Describe data flow and networking between systems.
- Discuss the systematic management of patient data and errors that may occur in the workflow when utilizing the digital system.
- Discuss the quality control test and preventive maintenance schedule used for digital display devices.
- Explain how digital image artifacts occur and how to avoid them.
- Analyze the use of an image histogram and look-up table (LUT) in digital image artifacts.
- Explain the Patient's Bill of Rights, Patient Privacy Rule (HIPAA) and Patient Safety Act.

Content Detail

Introduction

Step 1 - Digital radiography

Step 1.1 - Image acquisition

Step 1.2 - Equipment

Step 1.2.1 - Flat-panel detectors

Step 1.3 - Grid

Step 1.4 - Collimation

Step 1.5 - Patient radiation dose

Step 1.6 - Digital mammography

Step 1.7 - Advantages of digital radiography imaging system

Step 2 - Digital fluoroscopy

Step 2.1 - Digital fluoroscopy equipment

Step 2.1.1 - X-ray tube and generator

Step 2.1.2 - Digital fluoroscopy with image intensifier and CCD

Step 2.1.3 - Digital fluoroscopy with flat-panel detector

Step 2.2 - Advantages of flat-panel detectors

Step 2.3 - Digital subtraction angiography

Step 2.3.1 - Digital subtraction equipment

Step 2.3.2 - Image acquisition

Step 2.3.3 - Temporal subtraction

Step 2.3.4 - Energy subtraction

Step 2.3.5 - Roadmapping

Step 2.3.6 - Patient radation dose

Step 2.4 - Post-processing

Step 2.4.1 - Windowing

Step 2.4.2 - Edge enhancement

Step 3 - Digital image viewing and picture archiving and communication system (PACS)

Step 3.1 - Display and viewing of the digital image

Step 3.2 - Photometry

Step 3.3 - Digital display monitor

Step 3.3.1 - Active matrix liquid crystal display

Step 3.3.2 - Advantages of an AMLCD over a CRT

Step 3.3.3 - Disadvantage of an AMLCD over a CRT

Step 3.3.4 - Advantages of soft copy over hard copy images

Step 3.4 - Picture archiving and communication system

Step 3.4.1 - Components of picture archiving and communication system

Step 3.4.2 - Image compression

Step 3.4.3 - PACS workflow

Step 4 - Digital display and imaging system quality control, and artifacts

Step 4.1 - Daily routine checks

Step 4.2 - Weekly checks

Step 4.3 - Monthly checks

Step 4.4 - Digital display quality control

Step 4.4.1 - Luminance testing

Step 4.4.2 - Distortion testing

Step 4.4.3 - Reflection testing

Step 4.4.5 - Digital display noise

Step 4.4.4 - Luminance response

Step 4.5 - Image artifacts

Step 4.5.1 - Computed radiography image receptor artifacts

Section 2: Positioning modules contain simulations

Basic Radiographic Techniques

Description

This module provides a thorough introduction to basic radiographic techniques, and demonstrates how to set up and perform an X-ray procedure.

Learning objectives

- Discuss and utilize radiographic positioning terminology
- Discuss the care of the radiographic examining room
- Describe common radiographic positions
- Discuss the various approaches to dealing with trauma and pediatric patients
- Discuss basic radiographic positioning methods and steps
- · Describe and identify radiographic equipment
- Describe positioning landmarks
- Describe and explain the significance of obtaining a pertinent patient history
- Describe and explain the technologists' role with respect to patient safety and ALARA
- Discuss the importance of radiation protection
- Discuss infection control and prevention
- Describe and explain the reason for patient breathing techniques in order to obtain optimum radiographic images
- Analyze the radiographs for quality and proper positioning criteria
- Explain the Patient's Bill of Rights, HIPAA Privacy Rule (HIPAA), and Patient Safety Act

Content Detail

0. Introduction

Step 0.1 - Radiographic terminology

Step 0.1.1 - Body types

Step 0.1.2 - Terms describing curvature of the spine

Step 0.1.3 - Radiographic projections

Step 0.1.4 - Terms relating to image production

Step 0.2 - Osteology

Step 0.2.1 - Development of bones

Step 0.2.2 - Classification of bones

Step 0.3 – Arthrology

Step 1 - Overview

Step 1.1 - Orientation

Step 1.1.1 - Anatomical directions

Step 1.1.2 - Planes or body sections

Step 1.2 - Production of x-rays

Step 1.3 - Types of radiography

Step 1.3.1 - Conventional radiography

Step 1.3.2 - Computed radiography

Step 1.3.3 - Digital radiography

Step 1.3.4 - Picture archiving and communication systems

Step 1.4 - X-ray accessories

Step 1.4.1 - Lead blockers

Step 1.4.2 - Positioning aids

Step 1.4.3 - Compensatory filters

Step 1.4.4 - Measuring calipers

Step 2 - Preparation

Step 2.1 - Preprocedure considerations

Step 2.1.1 - Indications

Step 2.1.2 - Contraindications

Step 2.1.3 - Complications

Step 2.1.4 - Consent

Step 2.1.5 - Equipment

Step 2.1.6 - Special considerations

Step 2.2 - Equipment and room preparation

Step 2.2.1 - Start of day

Step 2.2.2 - Room set up

Step 2.3 - Patient preparation

Step 2.4 - Technologist preparation

Step 3 - Image receptor

Step 3.1 - Sizes

Step 3.2 - Bucky

Step 3.3 - Grid

Step 4 - Patient position

Step 4.1 - Body positions

Step 4.2 - Specific body positions

Step 4.3 - Terms related to patient movement

Step 4.4 - Anatomical landmarks for positioning

Step 5 - Central ray

Step 5.1 - Source image receptor distance

Step 6 – Collimation

Step 7 - Lead markers

Step 7.1 - Anatomic markers

Step 7.2 - Additional markers

Step 8 - Patient instructions

Step 9 - Exposure factors

Step 10 - Projections

Step 10.1 - Routine projections

Step 10.2 - Nonroutine projections

Step 10.2.1 - Special-use projection terms

Step 10.3 - Trauma projections

Step 10.4 - Pediatric projections

Step 10.4.1 - Neonate (less than 1 month old)

Step 10.4.2 - 0 to 4 years old

Step 10.4.3 - 5 years and older

Step 11 - Skeletal survey

Step 12 - Postprocedure

Step 12.1 - Viewing radiographic images

Step 12.2 - Other considerations

Step 13 - Professional considerations

Step 13.1 - Continuing professional development

Radiography of the Chest, Bony Thorax, and Soft Tissues of the Neck

Description

This module covers how to prepare for, set up and acquire radiographic projections of the chest, bony thorax and soft tissue of the neck and upper airways

Learning objectives

- Describe indications for radiographic procedures of the chest, bony thorax, and soft tissue neck/upper airway
- Describe and utilize radiographic positioning terminology
- Discuss anatomical details of the chest, bony thorax, and soft tissue neck/upper airway
- Discuss chest, bony thorax, and soft tissue neck/upper airway protocols
- Describe positioning criteria and anatomical landmarks for chest, bony thorax, and soft tissue neck/airway projections
- Discuss the radiographic requirements for chest, bony thorax, and soft tissue neck/upper airway with regards to trauma and pediatric patients
- Analyze radiographs for quality and correct positioning criteria
- Discuss chest, bony thorax, and soft tissue neck/upper airway pathology, and identify what signs and symptoms relate to that pathology
- Explain the Patient's Bill of Rights, HIPAA Privacy Rule (HIPAA), and Patient Safety Act

Content Detail

Introduction

Step 1 - Preparation

Step 1.1 - Equipment and room preparation

Step 1.2 - Patient preparation

Step 1.3 - Technologist preparation

Step 2 - Chest Projections

Step 2.1 - Routine projections

Step 2.2 - Trauma

Step 2.3 – Pediatrics

Step 3 - Sternum and Sternoclavicular Joints

Step 3.1 - Sternum

Step 3.2 - Sternoclavicular joints

Step 3.3 - Trauma

Step 3.4 - Pediatrics

Step 4 - Ribs

Step 4.1 - Routine projections

Step 4.2 - Trauma

Step 4.3 – Pediatrics

Step 5 - Upper Airway and Soft Tissues of the Neck

Step 5.2 - Trauma

Step 5.3 - Pediatrics

Step 5.1 - Routine projections

Radiography of the Upper Extremity and Shoulder Girdle

Description

This module covers how to prepare for, set up and obtain radiographic projections of the upper extremity and shoulder girdle.

Learning objectives

- Describe indications for radiographic procedures of the upper extremities
- Describe and utilize radiographic positioning terminology
- Discuss anatomical details of the upper extremities
- Discuss upper extremity protocols
- Describe positioning criteria and anatomical landmarks for each upper extremity projection
- Discuss the radiographic requirements of the upper extremities with regard to trauma and pediatric patients
- Analyze radiographs for quality and for correct positioning criteria
- Explain the Patient's Bill of Rights, HIPAA Privacy Rule (HIPAA), and Patient Safety Act

Content Detail

Introduction

Step 1 - Preparation

Step 1.1 - Equipment and room preparation

Step 1.2 - Patient preparation

Step 1.3 - Technologist preparation

Step 2 - Finger projections

Step 2.1 - Routine projections

Step 2.2 - Pediatric considerations

Step 2.3 - Trauma considerations

Step 3 - Hand projections

Step 3.1 - Routine projections

Step 3.2 - Pediatric considerations

Step 3.3 - Trauma considerations

Step 4 - Wrist projections

Step 4.1 - Routine projections

Step 4.2 - Pediatric considerations

Step 4.3 - Trauma considerations

Step 5 - Forearm projections

Step 5.1 - Routine projections

Step 5.2 - Pediatric considerations

Step 5.3 - Trauma considerations

Step 6 - Elbow projections

Step 6.1 - Routine projections

Step 6.2 - Pediatric considerations

Step 6.3 - Trauma considerations

Step 7 - Humerus

Step 7.1 - Routine projections

Step 7.2 - Pediatric considerations

Step 7.3 - Trauma considerations

Step 8 - Shoulder and scapula

Step 8.1 - Shoulder

Step 8.1.1 - Routine projections

Step 8.1.2 - Pediatric considerations

Step 8.1.3 - Trauma considerations

Step 8.2 - Scapula

Step 8.2.1 - Routine projections

Step 8.2.2 - Pediatric considerations

Step 8.2.3 - Trauma considerations

Step 9 - Clavicle

Step 9.1 - Routine projections

Step 9.2 - Pediatric considerations

Step 9.3 - Trauma considerations

Step 10 - Acromioclavicular joints and upper limb measurement

Step 10.1 - Acromioclavicular joints

Step 10.1.1 - Routine projections

Step 10.1.2 - Pediatric considerations

Step 10.1.3 - Trauma considerations

Step 10.2 - Upper Limb Measurement (Shoulder, Elbow, and Wrist)

Step 10.2.2 - Pediatric considerations

Step 10.2.1 - Upper limb measurement: AP - shoulder, elbow, and wrist

Radiography of the Lower Extremity and Hip

Description

This module covers how to prepare for, set up and obtain radiographs of the lower extremity and hip.

Learning objectives

- Describe indications for radiographic procedures of the hip and lower extremities
- Describe and utilize radiographic positioning terminology
- Discuss anatomical details of the hip and lower extremities
- Discuss hip and lower extremity protocols
- Describe positioning criteria and anatomical landmarks for each hip and lower extremity projection
- Discuss the radiographic requirements of the hip and lower extremities with regards to trauma and pediatric patients
- Analyze the radiographs for quality and for correct positioning criteria
- Discuss pathology of the hip and lower extremities
- Explain the Patient's Bill of Rights, HIPAA Privacy Rule, and Patient Safety Act

Content Detail

Introduction

Step 1 - Preparation

Step 1.1 - Equipment and room preparation

Step 1.2 - Patient preparation

Step 1.3 - Technologist preparation

Step 2 - Toe projections

Step 2.1 - Routine projections

Step 3 - Foot

Step 3.1 - Routine projections

Step 4 - Calcaneus

Step 4.2 - Pediatric considerations

Step 4.3 - Trauma considerations

Step 4.1 - Routine projections

Step 5 - Ankle

Step 5.1 - Routine projections

Step 5.2 - Pediatric considerations

Step 5.3 - Trauma considerations

Step 6 - Tibia and fibula

Step 6.1 - Routine projections

Step 6.3 - Trauma considerations

Step 6.2 - Pediatric considerations

Step 7 - Knee and patella

Step 7.2 - Patella

Step 7.2.1 - Routine projections

Step 7.3 - Pediatric considerations

Step 7.4 - Trauma considerations

Step 7.1 - Knee

Step 7.1.1 - Routine projections

Step 8 - Femur projections

Step 8.1 - Routine projections

Step 8.2 - Pediatric considerations

Step 8.3 - Trauma considerations

Step 9 - Hip projections

Step 9.1 - Routine projections

Radiography of the Abdomen and Pelvis

Description

This module demonstrates how to set up for and obtain X-rays of the abdomen and pelvis.

Learning objectives

- Describe the indications for radiographic procedures of the abdomen and pelvic girdle
- Describe and utilize radiographic positioning terminology
- Describe anatomical details of the abdomen and pelvic girdle
- Discuss abdomen and pelvic girdle protocols
- Describe positioning criteria and external landmarks for each abdomen and pelvic girdle projection
- Discuss the radiographic requirements for abdomen and pelvic girdle with regards to trauma and pediatric patients
- Analyze the radiographs for quality and correct positioning criteria
- Discuss pathology of the abdomen and pelvic girdle
- Explain the Patient's Bill of Rights, HIPAA Privacy Rule, and Patient Safety Act

Content Detail

Introduction

Step 1 - Preparation

Step 1.1 - Equipment and room preparation

Step 1.2 - Patient preparation

Step 1.3 - Technologist preparation

Step 2 - Abdomen projections

Step 2.1 - Routine projections

Step 2.2 - Trauma

Step 2.3 - Pediatrics

Step 3 - Pelvis and sacroiliac joints

Step 3.1 - Pelvis

Step 3.1.1 - Routine projections

Step 3.1.2 - Trauma

Step 3.1.3 - Pediatrics

Step 3.2 - Sacroiliac joints

Step 3.2.1 - Routine projections

Radiography of the Skull, Cranial and Facial Bones, and Paranasal Sinuses

Description

This SIMTICS module covers how to prepare for, set up, and obtain radiographs of the skull, cranial and facial bones, and paranasal sinuses.

Learning objectives

- Describe indications for radiographic procedures of the skull, cranial and facial bones, and paranasal sinuses
- Describe and utilize radiographic positioning terminology
- Discuss anatomical details of the skull, cranial and facial bones, and paranasal sinuses
- Discuss skull, cranial and facial bones, and paranasal sinuses protocols
- Describe positioning criteria and anatomical landmarks for each skull, cranial and facial bones, and paranasal sinuses projection
- Discuss the radiographic requirements for skull, cranial and facial bones, and paranasal sinuses with regards to trauma and pediatric patients
- Analyze the radiographs for quality and correct positioning criteria
- Discuss skull, cranial and facial bones, and paranasal sinuses pathologies
- Explain the Patient's Bill of Rights, HIPAA Privacy Rule, and Patient Safety Act

Content Detail

Introduction

Step 1 - Preparation

Step 1.1 - Equipment and room preparation

Step 1.2 - Patient preparation

Step 1.3 - Technologist preparation

Step 2 - Skull projections

Step 2.1 - Routine projections

Step 2.2 - Pediatric considerations

Step 2.3 - Trauma considerations

Step 3 - Facial bones

Step 3.1 - Routine projections

Step 3.2 - Pediatric considerations

Step 3.3 - Trauma considerations

Step 4 - Mandible and temporomandibular joints

Step 4.1 - Routine projections

Step 4.2 - Pediatric considerations

Step 4.3 - Trauma considerations

Step 4.4 - Routine projections

Step 4.5 - Pediatric considerations

Step 4.6 - Trauma considerations

Step 5 - Zygomatic arch

Step 5.1 - Routine projections

Step 5.2 - Pediatric considerations

Step 5.3 - Trauma considerations

Step 6 - Nasal bones

Step 6.1 - Routine projections

Step 6.2 - Pediatric considerations

Step 6.3 - Trauma considerations

Step 7 - Orbits

Step 7.1 - Routine projections

Step 7.2 - Pediatric considerations

Step 7.3 - Trauma considerations

Step 8 - Paranasal sinuses

Step 8.1 - Routine projections

Step 8.2 - Pediatric considerations

Step 8.3 - Trauma considerations

Radiography of the Spinal Column

Description

This module covers how to prepare for, set up and obtain radiographic images of the spinal column

Learning Objectives

- Discuss indications for radiographic procedures of the cervical, thoracic, lumbar, sacrum, and coccyx of the spine
- Describe and utilize radiographic positioning terminology
- Describe the anatomical details of the cervical, thoracic, and lumbar spine, and the sacrum and coccyx
- Discuss cervical, thoracic, lumbar, sacrum, and coccyx protocols
- Describe positioning criteria and anatomical landmarks for each of the cervical, thoracic, lumbar, sacrum, and coccyx spine projections
- Discuss the radiographic requirements for cervical, thoracic, lumbar, sacrum, and coccyx with regards to trauma and pediatric patients
- Analyze the radiographs for quality and correct positioning criteria
- Discuss pathology of the cervical, thoracic, and lumbar spine, and the sacrum and coccyx
- Explain the Patient's Bill of Rights, HIPAA Privacy Rule, and Patient Safety Act

Content Detail

Introduction

Step 1 - Preparation

Step 1.1 - Equipment and room preparation

Step 1.2 - Patient preparation

Step 1.3 - Technologist preparation

Step 2 - Cervical spine

Step 2.1 - Routine projections

Step 2.2 - Trauma considerations

Step 2.3 – Pediatrics

Step 3 - Thoracic spine

Step 3.1 - Routine projections

Step 3.2 - Trauma

Step 3.3 - Pediatrics

Step 4 - Lumbar spine

Step 4.1 - Routine projections

Step 4.2 - Trauma

Step 4.3 – Pediatrics

Step 5 - Sacrum

Step 5.1 - Routine projections

Step 5.2 - Trauma

Step 5.3 – Pediatrics

Step 6 - Coccyx

Step 6.1 - Routine projections

Step 6.2 - Trauma

Step 6.3 - Pediatrics

Radiography of the Upper and Lower Gastrointestinal Systems and the Biliary Tract

Description

This module covers how to set up for and perform radiography of the upper and lower gastrointestinal systems and biliary tract.

Learning objectives

- Discuss the basic anatomy and physiology of the gastrointestinal (GI) system
- Discuss the basic anatomy and physiology of the biliary tract system
- Discuss positioning criteria, projections, use of contrast media, and procedures utilized in radiography of the upper GI system, lower GI system, and biliary tract system
- Discuss the various pathological indications and contraindications for each procedure
- Discuss the equipment and supply preparation for each procedure
- Analyze the radiographs for quality and proper positioning criteria for each procedure
- Describe signs and symptoms and management of an anaphylactic reaction
- Explain the Patient's Bill of Rights, HIPAA Privacy Rule, and Patient Safety Act

Content Detail

0. Introduction

Step 0.1 - Basic physiology of the digestive and biliary systems

Step 0.1.1 - Digestive system

Step 0.1.2 - Liver and biliary system

Step 0.2 - Radiography of the digestive system

Step 0.3 - Contrast media

Step 0.4 - Anaphylaxis

Step 1 - Barium swallow

Step 1.1 - Preparation

Step 1.1.1 - Equipment and room preparation

Step 1.1.2 - Radiologic technologist's preparation

Step 1.1.3 - Patient preparation

Step 1.2 - Protocols

Step 1.2.1 - Radiologic technologist's role

Step 1.2.2 - Radiologist's role

Step 1.2.3 - Esophagram protocol

Step 1.2.4 - Modified barium swallow protocol

Step 1.3 - Projections for barium esophagram

Step 2 - Upper gastrointestinal series (UGI)

Step 2.1 - Preparation

Step 2.1.1 - Equipment and room preparation

Step 2.1.2 - Radiologic technologist's preparation

Step 2.1.3 - Patient preparation

Step 2.2 - Protocols

Step 2.2.1 - Radiologic technologist's role

Step 2.2.2 - Radiologist's role

Step 2.3 - Projections for an UGI series

Step 3 - Small bowel series (SBS)

Step 3.1 - Preparation

Step 3.1.1 - Equipment and room preparation

Step 3.1.2 - Radiologic technologist's preparation

Step 3.1.3 - Patient preparation

Step 3.2 - Protocols

Step 3.2.1 - Radiologic technologist's role

Step 3.2.2 - Radiologist's role

Step 3.3 - Projections for a small bowel series

Step 3.4 - Pediatric upper gastrointestinal tract study

Step 3.4.1 - Specific equipment and preparation for pediatric upper GI study

Step 3.4.2 - Patient (and guardian) preparation

Step 3.4.3 - Procedure for a pediatric UGI study

Step 3.4.4 - Procedure for a pediatric small bowel study

Step 4 - Barium enema (BE) - lower GI series

Step 4.1 - Preparation

Step 4.1.1 - Equipment and room preparation

Step 4.1.2 - Radiologic technologist's preparation

Step 4.1.3 - Patient preparation

Step 4.2 - Protocols

Step 4.2.1 - Radiologic technologist's role

Step 4.2.2 - Radiologist's role

Step 4.3 - Projections for a barium enema - lower GI series

Step 4.4 - Pediatric lower GI series

Step 4.4.1 - Specific equipment and preparation for pediatric lower GI series or barium enema

Step 4.4.2 - Patient (and guardian) preparation

Step 4.4.3 - Protocols

Step 5 - Endoscopic retrograde cholangiopancreatography (ERCP)

Step 5.1 - Preparation

Step 5.1.1 - Equipment and room preparation

Step 5.1.2 - Radiologic technologist's preparation

Step 5.1.3 - Patient preparation

Step 5.2 - Protocols

Step 5.2.1 - Radiologic technologist's role

Step 5.2.2 - Radiologist's or gastroenterologist's role

Step 5.3 - Surgical cholangiography

Radiography of the Central Nervous System, Circulatory System, and Arthrography

Description

This module provides an overview of radiography of the central nervous system, circulatory system, as well as arthrography

Learning objectives

- Discuss the basic anatomy and physiology of the central nervous system
- Discuss the basic anatomy and physiology of the circulatory system
- Discuss the basic anatomy and physiology of the synovial joint
- Discuss positioning criteria, projections, use of contrast media, and procedures utilized in radiography of the central nervous system, circulatory system, and joints
- Discuss the various pathological indications and contraindications for each procedure
- Discuss the equipment and supply preparation for each procedure
- Analyze the radiographs for quality and correct positioning criteria for each procedure
- Describe the management of anaphylactic reaction
- Explain the Patient's Bill of Rights, HIPAA Privacy Rule, and Patient Safety Act

Content Detail

0. Introduction

Step 0.1 - Basic anatomy and physiology of the body system

Step 0.1.1 - Central nervous system

Step 0.1.2 - Basic anatomy of the circulatory (cardiovascular) system

Step 0.1.3 - Basic anatomy of a synovial joint

Step 0.2 - Contrast media

Step 1 - Central nervous system

Step 1.1 - Preparation

Step 1.1.1 - Equipment and room preparation

Step 1.1.2 - Radiologic technologist preparation

Step 1.1.3 - Patient preparation

Step 2 - Circulatory system

Step 2.1 - Preparation

Step 2.1.1 - Equipment and room preparation

Step 2.1.2 - Contrast media preparation

Step 2.1.3 - Technologist preparation

Step 2.1.4 - Patient preparation

Step 3 - Circulatory System

Step 3.1 - Preparation

Step 3.1.1 - Equipment and room preparation

Step 3.1.2 - Contrast media preparation

Step 3.1.3 - Technologist preparation

Step 3.1.4 - Patient preparation

Step 4 - Circulatory system

Step 4.1 - Preparation

Step 4.1.1 - Equipment and room preparation

Step 4.1.2 - Contrast media preparation

Step 4.1.3 - Technologist preparation

Step 4.1.4 - Patient preparation

Step 5 - Circulatory system

Step 5.1 - Preparation

Step 5.1.1 - Equipment and room preparation

Step 5.1.2 - Contrast media preparation

Step 5.1.3 - Technologist preparation

Step 5.1.4 - Patient preparation

Step 6 - Arthrography

Step 6.1 - Preparation

Step 6.1.1 - Equipment and room preparation

Step 6.1.2 - Contrast media preparation

Step 6.1.3 - Technologist preparation

Step 6.1.4 - Patient preparation

Radiography of the Urinary and Reproductive Systems

Description

This module covers how to prepare for, set up and perform radiography of the urinary and reproductive systems.

Learning objectives

- Discuss the basic anatomy and physiology of the urinary system
- Discuss the basic anatomy and physiology of the male and female reproductive systems
- Discuss positioning criteria, projections, use of contrast media, and procedures utilized in radiography of the urinary system and reproductive systems
- Discuss the various pathological indications and contraindications
- Discuss the equipment and supply preparation
- Describe the management of anaphylactic reaction
- Analyze the radiographs for quality and proper positioning criteria
- Explain the Patient's Bill of Rights, HIPAA Privacy Rule, and Patient Safety Act

Content Detail

Introduction

Step 1 - General preparation for a contrast media study

Step 1.1 - Equipment and room preparation

Step 1.2 - Technologist preparation

Step 2 - Intravenous cannulation technique (for contrast administration)

Step 3 - Intravenous urogram

Step 3.1 - Preparation

Step 3.1.1 - Equipment and room preparation

Step 3.1.2 - Patient preparation

Step 3.2 - Protocols

Step 3.2.1 - Radiographic technologist's role

Step 3.2.2 - Radiologist's role

Step 3.3 – Projections

Step 4 - Retrograde pyelography

Step 4.1 - Preparation

Step 4.1.1 - Equipment and room preparation

Step 4.1.2 - Patient preparation

Step 4.2 - Protocols

Step 4.2.1 - Radiographic technologist's role

Step 4.2.2 - Radiologist or urologist's role

Step 4.3 - Projections

Step 5 - Cystography

Step 5.1 - Preparation

Step 5.1.1 - Equipment and room preparation

Step 5.1.2 - Patient preparation

Step 5.2 - Protocols

Step 5.2.1 - Radiographic technologists role

Step 5.2.2 - Radiologist or urologist's role

Step 5.3 – Projections

Step 6 - Voiding cystourethrography

Step 6.1 - Preparation

Step 6.1.1 - Equipment and room preparation

Step 6.1.2 - Patient preparation

Step 6.2 - Protocols

Step 6.2.1 - Radiologic technologist's role

Step 6.2.2 - Radiologist or urologists' role

Step 6.3 – Projections

Step 7 - Hysterosalpingogram (HSG)

Step 7.1 - Preparation

Step 7.1.1 - Equipment and room preparation

Step 7.1.2 - Patient preparation

Step 7.2 - Protocols

Step 7.2.1 - Radiologic technologist's role

Step 7.2.2 - Radiologist's role

Step 7.3 - Projections

Non-Routine Projections for Chest, Neck, Upper Extremities & Shoulder Girdle

Description

This module covers how to prepare for, set up, and obtain non-routine radiographic projections of the chest, bony thorax, upper airway/soft tissue of the neck, upper extremities and shoulder girdle.

Learning objectives

- Describe indications for radiographic procedures of the chest, bony thorax, soft tissues of the neck, upper extremity, and shoulder girdle.
- Describe and utilize radiographic positioning terminology.
- Discuss anatomical details of the chest, bony thorax, soft tissues of the neck, upper extremity, and shoulder girdle.
- Discuss chest, bony thorax, soft tissues of the neck, upper extremity, and shoulder girdle protocols.
- Describe positioning criteria and anatomical landmarks for chest, bony thorax, soft tissues of the neck, upper extremity, and shoulder girdle projections.
- Discuss the radiographic requirements for chest, bony thorax, soft tissues of the neck, upper extremity, and shoulder girdle, with regards to trauma and pediatric patients.
- Analyze radiographs for quality and correct positioning criteria.
- Discuss chest, bony thorax, soft tissues of the neck, upper extremity, and shoulder girdle pathology.
- Explain the Patient's Bill of Rights, Patient Privacy Rule (HIPAA), and Patient Safety Act.

Content Detail

Introduction

Step 1 - Preparation

Step 1.1 - Equipment and room preparation

Step 1.2 - Patient preparation

Step 1.3 - Technologist preparation

Step 2 - Chest

Step 2.1 - Non-routine projections

Step 2.2 - Pathology of the pediatric soft tissue neck

Step 3 - Ribs

Step 3.1 - Routine projections

Step 3.2 - Trauma considerations

Step 3.3 - Pathology of the ribs

Step 4 - Wrist

Step 4.1 - Non-routine projections

Step 4.2 - Trauma

Step 4.3 - Pathology of the scaphoid

Step 5 - Elbow

Step 5.1 - Non-routine projections

Step 5.2 - Trauma considerations

Step 5.3 - Pathology of the elbow

Step 6 - Humerus

Step 6.1 - Non-routine projections

Step 6.2 - Trauma considerations

Step 6.3 - Pathology of the humerus

Step 7 - Shoulder, scapula, and clavicle

Step 7.1 - Non-routine projections

Step 7.2 - Trauma considerations

Step 7.3 - Pathology of the shoulder

Pharmacology and Drug Administration

Description

This module covers pharmacology and the role of the radiologic technologist in administering drugs for radiologic procedures. *It includes a simulation for placing a venous cannula.*

Learning objectives

- Understand and describe the imaging professional's ethical and legal role in drug administration
- Explain the importance of obtaining a clinical history before administering any drug
- Understand and describe basic pharmacological principles including drug nomenclature, classification, dosing, and charting practices
- Understand and explain the concepts of pharmacodynamics and pharmacokinetics

- Explain various routes by which drugs may be administered, and the advantages and disadvantages of each route
- Discuss intravenous drug therapy and its complications
- Discuss specific drugs, drug categories, and methods of administering drugs used in medical imaging
- Explain the importance of patient preparation prior to a contrast study, and postprocedural considerations following a contrast study
- Describe the imaging technologist's role in venous cannulation
- Explain the importance of obtaining informed consent
- Define the categories of contrast agents and give examples from each category
- Understand the pharmacology of contrast agents
- Distinguish between mild and more severe drug reactions
- Discuss procedural anxiety and the types of medications used to treat it
- Understand and discuss the pharmacology of medications used in emergency situations
- List the contents of a crash cart
- Describe the role of the imaging technologist in a medical emergency
- Explain the HIPAA Privacy Rule, and Patient Safety Act

Content Details

Introduction

Step 1 - Principles of pharmacology and drug administration

Step 1.1 - Drug names

Step 1.2 - Prescribing

Step 1.3 - Controlled drugs

Step 1.5 - Placebos

Step 1.4 - Complementary or alternative medications

Step 1.6 - Documentation

Step 1.7 - Taking a drug history

Step 2 - Biological effects

Step 2.1 - Biopharmaceutics

Step 2.2 - Pharmacokinetics

Step 2.2.1 - Drug absorption

Step 2.2.2 - Drug distribution

Step 2.2.3 - Drug metabolism

Step 2.2.4 - Drug excretion

Step 2.3 - Dosing considerations

Step 2.3.1 - Pregnancy

Step 2.3.2 - Pediatrics

Step 2.3.3 - Geriatrics (over 65 years of age)

Step 2.4 - Pharmacodynamics

Step 2.4.1 - Site of action

Step 2.4.2 - Mechanisms of action

Step 2.4.3 - Therapeutic effects

Step 2.5 - Factors affecting drug pharmacokinetics and pharmacodynamics

Step 2.6 - Osmotic effect

Step 3 - Drug classification

Step 3.1 - Analgesics

Step 3.1.1 - Opioids

Step 3.1.2 - Nonsteroidal anti-inflammatory drugs (NSAIDS)

Step 3.1.3 - Paracetamol/Acetaminophen

Step 3.2 - Drugs affecting the central nervous system

Step 3.2.1 - Antidepressants

Step 3.2.2 - Anxiolytics (benzodiazepines)

Step 3.2.3 - Anticonvulsants

Step 3.2.4 - Antipsychotics

Step 3.2.5 - General anesthetics

Step 3.2.6 - Barbiturates

Step 3.3 - Drugs affecting the cardiovascular system

Step 3.3.1 - Antihypertensives

Step 3.3.2 - Antianginals

Step 3.3.3 - Anticoagulants, antiplatelets, and thrombolytics

Step 3.3.4 - Statins

Step 3.3.5 - Antiarrhythmics

Step 3.4 - Drugs affecting the endocrine system

Step 3.4.1 - Hypoglycemics

Step 3.5 - Drugs affecting the immune system

Step 3.5.1 – Antibiotics

Step 4 - Contrast media

Step 4.1 - Classification

Step 4.1.1 - Intravascular ROCM

Step 4.1.2 - Enteral ROCM

Step 4.1.4 - Ultrasound microbubble ROCM

Step 4.1.3 - Parmagnetic ROCM

Step 4.2 - Pharmacology

Step 4.2.1 - Iodinated radiopaque contrast media

Step 4.2.1.1 - Intravascular

Step 4.2.1.2 - Enteral

Step 4.2.2 - Barium sulfate

Step 4.3 - Adverse reactions

Step 4.3.1 - Iodinated radiopaque contrast media

Step 4.3.2 - Barium sulfate

Step 4.3.3 - Paramagnetic agents

Step 4.3.4 - Ultrasound microbubble agents

Step 4.4 - Drug interactions

Step 4.5 - Contraindications to ROCM

Step 4.6 - Procedural considerations

Step 4.6.1 - Patient preparation for different contrast studies

Step 4.6.2 - Postprocedure considerations

Step 4.6.3 - Scheduling multiple procedures

Step 4.6.4 - Informed consent

Step 5 - Routes of administration

Step 5.1 - Oral

Step 5.2 - Sublingual

Step 5.3 - Rectal

Step 5.4 - Topical

Step 5.5 - Subcutaneous

Step 5.6 - Intrathecal

Step 5.7 - Intra-articular

Step 5.8 - Intramuscular

Step 5.9 - Intravenous

Step 5.9.1 - Inserting a peripheral IV line (venous cannulation)

Step 5.9.2 - Complications of IV lines

Step 5.9.3 - Central venous lines

Step 5.9.4 - Infection prevention and control

Step 6 - Procedural anxiety

Step 6.1 - Conscious sedation

Step 7 - Medical emergencies

Step 7.1 - How to approach an emergency situation

Step 7.2 - Crash cart items

Step 7.3 - Emergency medications

Additional "Clinical" Modules for Academic Institutions

The SIMTICS Radiography Suite comes with three additional "Integrated Clinical" modules for academic institutions only. These contain all the simulations and quizzes for a group of modules, plus additional simulation scenarios based on the material in that group of modules. These are designed to give students additional practice with multiple cases, to help them prepare for the clinical environment

Radiography Integrated Clinical 1 - chest & upper extremity

A compilation of 12 simulations and quizzes covering material in these modules:

- 1) Chest, Bony Thorax and Soft Tissues of Neck; and
- 2) Upper Extremity & Shoulder Girdle.

Contains the 4 scenarios and the quiz question bank from the above modules, plus 6 *additional* simulation scenarios.

Radiography Integrated Clinical 2 - abdomen, pelvis, lower extremity, hip, spine, head

A compilation of 20 simulations and guizzes covering material in these modules:

- 1) Abdomen & Pelvis;
- 2) Lower Extremity & Hip;
- 3) Spinal Column; and
- 4) Skull, Cranial and Facial Bones, and Paranasal Sinuses.

Contains the 12 scenarios and the quiz question bank from the above 4 modules, plus 8 *additional* simulation scenarios.

Radiography Integrated Clinical 3 - GI & urinary systems, biliary tract, female reproduction

A compilation of 8 simulations plus quizzes covering material in these modules:

- 1) Upper & Lower GI Systems & Biliary Tract;
- 2) Urinary & Reproductive Systems

Contains the 4 simulation scenarios and the quiz question bank from these two modules, plus 4 additional simulation scenarios.